Spike history model for neural control
نویسندگان
چکیده
منابع مشابه
A simple model for low variability in neural spike trains
Neural noise sets a limit to information transmission in sensory systems. In several areas, the spiking response (to a repeated stimulus) has shown a higher degree of regularity than predicted by a Poisson process. However, a simple model to explain this low variability is still lacking. Here we introduce a new model, with a correction to Poisson statistics, which can accurately predict the reg...
متن کاملA Rate and History-Preserving Resampling Algorithm for Neural Spike Trains
Resampling methods are popular tools for exploring the statistical structure of neural spike trains. In many applications, it is desirable to have resamples that preserve certain non-Poisson properties, like refractory periods and bursting, and that are also robust to trial-to-trial variability. Pattern jitter is a resampling technique that accomplishes this by preserving the recent spiking his...
متن کاملCharacterizing Neural Gain Control using Spike-triggered Covariance
Spike-triggered averaging techniques are effective for linear characterization of neural responses. But neurons exhibit important nonlinear behaviors, such as gain control, that are not captured by such analyses. We describe a spike-triggered covariance method for retrieving suppressive components of the gain control signal in a neuron. We demonstrate the method in simulation and on retinal gan...
متن کاملSpike-triggered neural characterization.
Response properties of sensory neurons are commonly described using receptive fields. This description may be formalized in a model that operates with a small set of linear filters whose outputs are nonlinearly combined to determine the instantaneous firing rate. Spike-triggered average and covariance analyses can be used to estimate the filters and nonlinear combination rule from extracellular...
متن کاملOptimal Neural Spike Classification
Being able to record the electrical activities of a number of neurons simultaneously is likely to be important in the study of the functional organization of networks of real neurons. Using one extracellular microelectrode to record from several neurons is one approach to studying the response properties of sets of adjacent and therefore likely related neurons. However, to do this, it is necess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Neuroscience
سال: 2014
ISSN: 1471-2202
DOI: 10.1186/1471-2202-15-s1-p96